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An effective theory approach to unstable particles
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Using the hierarchy of scales between the mass, M and the width Γ of a heavy, unstable particle
we construct an effective theory that allows calculations for resonant processes to be systematically
expanded in powers of the coupling α and Γ/M . We illustrate the method by computing the next-
to-leading order line shape of a scalar resonance in an abelian gauge-Yukawa model.

PACS numbers: 11.80.Cr

Higher-order calculations for processes involving mas-
sive, unstable particles close to resonance suffer from the
breakdown of ordinary perturbation theory, since the in-
termediate propagator becomes singular. This singular-
ity is avoided if the finite width, Γ, of the unstable parti-
cle is taken into account in the construction of the prop-
agator via resummation of self-energy insertions. There
are a number of approaches along this line to avoid the
problem [1]. However, so far there is no method that
allows to systematically improve the accuracy of calcula-
tions order by order in perturbation theory.

The purpose of this letter is to present such a method.
We are concerned with processes involving an unstable
particle close to resonance. The main idea is to exploit
the hierarchy of scales Γ � M , whereM is the pole mass,
in order to systematically organise the calculations in a
series in the coupling, α, and Γ/M . While the expan-
sion in α is obvious, we construct an effective theory to
perform the expansion in Γ/M . The main idea of our
approach is very similar to non-relativistic QCD, where
an expansion in α and the velocity of the heavy quarks is
made and a first step in this direction has been presented
in [2]. We will identify all relevant modes and use them
to write the operators of the Lagrangian of the effective
theory. This Lagrangian is then matched to the underly-
ing theory, using the method of regions [3]. In this letter
we will outline the basic idea and we refer to [4] for more
details.

Let us illustrate the method with a toy model that in-
volves a massive scalar field, φ, and two fermion fields.
The scalar as well as one of the fermion fields, ψ, (the
“electron”) are charged under an abelian gauge symme-
try, whereas the other fermion, χ, (the “neutrino”) is
neutral. The model allows for the scalar to decay into
an electron-neutrino pair through a Yukawa interaction.
We also include a scalar self-interaction to ensure renor-
malisability. The Lagrangian is given by

L = (Dµφ)†Dµφ− M̂2φ†φ+ ψ̄i 6Dψ + χ̄i6∂χ

− 1
4
FµνFµν − 1

2ξ
(∂µA

µ)2

+ yφψ̄χ+ y∗φ†χ̄ψ − λ

4
(φ†φ)2 + Lct, (1)

The fields and parameters are renormalised in a particu-
lar scheme, to be specified later. M̂ and Lct denote the
corresponding renormalised mass and counterterm La-
grangian. We define αg ≡ g2/(4π), αy ≡ (yy∗)/(4π) and
assume αg ∼ αy ∼ α. For the counting in the following
we will assume αλ ≡ λ/(4π) ∼ α2/(4π).

We would like to obtain the totally inclusive cross sec-
tion for the process

ν̄(q) + e−(p) → X (2)

as a function of s ≡ (p + q)2 by calculating the forward
scattering amplitude T (s) and taking its imaginary part.
In particular, we are interested in the region s ≈ M2,
or more precisely s − M2 ∼ MΓ ∼ αM2 � M2. In
this kinematic region the cross section is enhanced due
to the propagator of the scalar. Furthermore, at each
order in α we get additional contributions proportional
to αM̂2/(s− M̂2) ∼ 1 due to self-energy insertions.

As stated above, our approach is based on the hierar-
chy of scales Γ � M . Thus, we systematically expand
the cross section in powers of α and

δ ≡ s− M̂2

M̂2
∼ Γ
M

(3)

In a theory that formulates this expansion correctly,
other issues like resummation of self-energy insertions
and gauge invariance are taken care of automatically.

Before turning to the formulation of such a theory, we
remark that the total cross section (2) has an initial state
collinear singularity which has to be absorbed into the
electron distribution function. In what follows it is un-
derstood that this singularity is subtracted minimally.

We now turn to the main part of this letter and discuss
how to construct the effective theory. In a first step we
integrate out hard momenta k ∼M . The effective theory
will then not contain any longer dynamical hard modes
since their effect is included in the coefficients of the op-
erators. The hard effects are associated with the factoris-
able corrections, whereas the effects of the still dynamical
modes corresponds to the non-factorisable corrections [2].
On the level of Feynman diagrams, this amounts to us-
ing the method of regions to separate loop integrals into
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various contributions [3]. The hard part is obtained by
expanding the integrand in δ. The difference between the
full integral and its hard part has to be reproduced by
modes corresponding to momentum configurations that
are near mass-shell. The main task is to identify these
modes, write the operators of the effective Lagrangian in
terms of the corresponding field operators and then com-
pute the coefficients of the operators by matching (up to
a certain order in α and δ).

Our goal is to carry out this programme for our model
to an order in α and δ that is sufficient to compute
T (0) + T (1), the forward scattering amplitude at next-
to-leading order (NLO). The basic process under consid-
eration is the following: we start with highly energetic
fermions, produce a near mass-shell scalar which then
decays again into highly energetic fermions. Accordingly
we split the effective Lagrangian into three parts. The
first, LHSET, describes the heavy scalar field near mass-
shell and its interaction with the gauge field. The second
part, LSCET, describes energetic (charged) fermions and
their interactions with the gauge field. Finally, the third
part, Lint, describes the external fermions and how they
interact to produce the final state. We will discuss these
three parts in turn.

The construction of the effective Lagrangian, LHSET,
follows closely the construction of the effective La-
grangian for heavy quark effective theory (HQET) [5].
We write the momentum of the scalar particle near reso-
nance as P = M̂v+k, where the velocity vector v satisfies
v2 = 1 and the residual momentum k scales as Mδ. We
will call such a scalar field a “soft” field (in [2] the term
“resonant” has been used). Thus, for a soft scalar field we
have P 2 − M̂2 ∼ Mδ and this remains true if the scalar
particle interacts with a soft gauge boson with momen-
tum ∼ Mδ. In analogy to HQET we remove the rapid
spatial variation e−iM̂v·x from the φ-field and define

φv(x) ≡ eiM̂v·x P+φ(x). (4)

where P+ projects onto the positive frequency part to
ensure that φv is a pure destruction field. We now write
the effective Lagrangian in terms of φv and construct the
bilinear terms so as to reproduce the two-point function
close to resonance. Denoting the complex pole of the
propagator by s̄ and the residue at the pole by Rφ the
propagator can be written as

i Rφ

P 2 − s̄
=

i Rφ

2M̂vk + k2 − (s̄− M̂2)
. (5)

We define the matching coefficient

∆ ≡ s̄− M̂2

M̂
(6)

and aµ
> ≡ aµ − (va)vµ for any vector and express the

solution P 2 = s̄ expanded in δ as

(vk) = −M̂ +
√
M̂2 + M̂∆ − k2

>

=
∆
2

− ∆2 + 4k2
>

8M̂
+ O(δ3) (7)

Therefore, the bilinear terms are given by

Lφφ = 2M̂φ†v

(
iv ·Ds −

∆
2

)
φv

+ 2M̂φ†v

(
(iDs>)2

2M̂
+

∆2

8M̂

)
φv + . . . , (8)

where Ds ≡ ∂ − igAs denotes the covariant derivative
with a soft photon field. In obtaining Lφφ we exploited
the fact that the gauge invariance of the full Lagrangian
is not broken by the separation into hard and soft parts.
Therefore, the effective Lagrangian must be gauge in-
variant as well and we can obtain the interaction of the
scalar with the soft photon simply by replacing ∂ → Ds.
The gauge invariance of ∆ follows from the gauge in-
variance of s̄ and M̂ . Furthermore, ∆ is given entirely
by hard contributions, which justifies its interpretation
as matching coefficient. Using (6) we can express it in
terms of the hard part of the self-energy Πh(s). Writing
Πh(s) = M̂2

∑
k,l δ

l Π(k,l), where it is understood that
Π(k,l) ∼ αk, we obtain

∆ ≡
∑

i

∆(i) = M̂ Π(1,0)+M̂
(
Π(2,0) + Π(1,1)Π(1,0)

)
+. . .

(9)
Explicit results for ∆(1) and ∆(2) in the MS and pole
renormalisation scheme can be found in [4]. Here we
only note that in the pole scheme ∆(1) = −iΓ. Inserting
the expansion (9) into (8) and supplementing Lφφ with
the kinetic terms for soft photons and fermions we obtain

LHSET = 2M̂φ†v

(
iv ·Ds −

∆(1)

2

)
φv

+ 2M̂φ†v

(
(iDs,>)2

2M̂
+

[∆(1)]2

8M̂
− ∆(2)

2

)
φv

− 1
4
FsµνF

µν
s + ψ̄si 6Dsψs + χ̄si 6∂χs (10)

Each term in LHSET can be assigned a scaling power in
δ. In momentum space the propagator of the φv field
scales as 1/δ. Because

∫
d4k counts as δ4 the soft scalar

field φv(x) scales as δ3/2. Since ∆(1) ∼ Ds ∼ Mδ both
terms in the first line of (8) scale as δ4 and are leading
terms. The terms in the second line are suppressed by
one power in δ or α. Finally, since Aµ

s scales as δ and the
soft fermion fields scale as δ3/2 the terms in the last line
of (8) scale as δ4. In (8) we have left out terms further
suppressed in δ or α. As we will see, they are not needed
for the calculation of the line shape at NLO. However, we
stress that the expansion can be performed to whatever
accuracy is needed.

As a final remark related to the construction of LHSET

we note that computing the scalar propagator to all or-
ders in δ using LHSET does not reproduce (5). Instead
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near resonance we obtain i$−1Reffφ/(P 2 − s̄), where

$−1 ≡
√
M̂2 + M̂∆ − k2

>/M̂ = 1 + O(δ, α). The dif-
ference in the residue factor will be taken care of au-
tomatically by loop graphs in the effective theory. The
difference in the normalization due to the factor $−1

however has to be taken into account by an additional
wave-function normalisation factor $−1/2 for each exter-
nal φv-line in the effective theory.

Next, we turn to the construction of the effective La-
grangian, LSCET, associated with energetic fermions. We
need a “collinear” mode to describe a fermion with large
momentum in the say ~n− direction. Such modes have
been discussed previously within the context of soft-
collinear effective theory (SCET) [6]. In particular, in
position space the Lagrangian has been worked out to
order δ2 in [7] and we can simply take the parts relevant
to us from there. We mention that we call “soft” here
what is usually called “ultrasoft” in the context of SCET
and in the power counting our δ corresponds to λ2 in
[7]. For each direction defined by an energetic particle
we introduce two reference light-like vectors, n±, with
n2

+ = n2
− = 0 and n+n− = 2 and we write the corre-

sponding momentum as

pµ = (n+p)
nµ
−
2

+ pµ
⊥ + (n−p)

nµ
+

2
, (11)

where n+p ∼ M , n−p ∼ Mδ and p⊥ ∼ Mδ1/2. Given a
certain direction n− we introduce the collinear field ψc

which satisfies 6n−ψc = 0. The terms relevant for the
calculation of T (0) + T (1) are then given by

LSCET = ψ̄c

(
in−D + i 6D⊥c

1
in+Dc + iε

i 6D⊥c

)
6n+

2
ψc

(12)
Since we are concerned with the forward scattering am-
plitude, the only directions defined by energetic particles
are given by the incoming electron and (anti)neutrino.
Thus, we have two sets of collinear modes, one for
the incoming electron, ψc1, and one for the incoming
(anti)neutrino, χc2. Of course, in the case of the neutrino,
the covariant derivatives in (12) have to be replaced by
ordinary derivatives.

Following [7] we note that all terms in (12) scale as
δ4. Terms of order δ9/2 and δ5 do exist, but they are
not needed for our application, since they would result
in contributions suppressed by an additional power of α
and, therefore, contribute only at NNLO. But we stress
again that there is no difficulty in going to higher orders
in the expansion if needed.

The last part to consider is Lint. It has to include oper-
ators that allow the production and decay of the unstable
particle. Without introducing additional modes it is not
possible to include such vertices as ordinary interaction
terms in the effective Lagrangian [4]. The reason is that
the momenta of generic collinear states ψc1 and χ̄c2 do

not add up to a momentum of the form P = Mv + k.
Either we have to implement this kinematic constraint
on our external states by hand [4] or we have to intro-
duce a new “external collinear” mode. Taking the second
option, we define an external collinear mode with large
momentum in the ~n− direction by assigning it a momen-
tum M̂n−/2 + k, where k ∼ δ. This mode has the same
virtuality M̂δ1/2 as an ordinary collinear mode but the
momentum is not given by (11). It has a fixed large com-
ponent such that the two incoming fermions produce a
scalar near mass shell. All other components scale as δ.
For such a mode it is useful to extract the fixed large
momentum and define

ψn−(x) ≡ eiM̂/2 (n−x) ψc1(x) (13)

and similarly for χn+ . For the purpose of computing
T (0) +T (1) it is sufficient to take the first term of LSCET,
(12), with a soft photon only to describe the interaction
of the external collinear fermions with the photons

L± = ψ̄n−(in−Ds)
6n+

2
ψn− + χ̄n+(in+∂)

6n−
2
χn+ (14)

Using the external modes we can implement the produc-
tion and decay vertices as interaction terms in Lint. Be-
cause adding soft fields results in a further suppression
in δ we can restrict ourselves to

Lint = C y φvψ̄n−χn+ + C y∗φ†vχ̄n+ψn−

+ F yy∗
(
ψ̄n−χn+

) (
χ̄n+ψn−

)
(15)

where C = 1+O(α) and F are the matching coefficients.
The external fields scale as δ3/2. Thus, an insertion of
a φψχ operator results in

∫
d4xφvψ̄n−χn+ ∼ δ1/2. The

forward scattering amplitude can be obtained by two in-
sertions of this operator. Taking into account the scaling
of the external state 〈ν̄e−| ∼ δ−1 we see that T (0) ∼ α/δ.
The four-fermion operator is suppressed in δ and results
in a contribution ∼ α to T . Thus, to compute T (1) we
need C(1), the O(α) contribution to the matching coeffi-
cient C, while F is only needed at tree level.

The coefficient C(1) is obtained by matching the on-
shell three-point function of a scalar field, an electron and
a neutrino at order y α and at leading order in δ. In par-
ticular, this involves the computation of (the hard part)
of the vertex diagram and the additional wave-function
normalisation factor $−1/2 mentioned above has to be
taken into account. For the precise matching equation as
well as the explicit result for C(1) we refer to [4]. Here
it suffices to say that these are completely standard loop
calculations. To obtain F (0) we have to match the four-
point function at tree level, but include subleading terms
in δ. The explicit result is F (0) = 1/4M̂2.

We have now completed the construction of the effec-
tive Lagrangian Leff = LHSET +L± +Lint to a sufficient
accuracy to compute T at NLO. At leading order there is
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FIG. 1: The line shape (in GeV−2) in the effective the-
ory at LO (light grey/magenta dashed) and NLO (light
grey/magenta) and the LO cross section off resonance in the
full theory (dark grey/blue dashed) as a function of the centre-
of-mass energy.

only one diagram, involving two three-point vertices and
one resonant scalar propagator. We get

iT (0) =
i3 yy∗

2M̂D
[ū(p)v(q)] [v̄(q)u(p)]. (16)

where we defined D ≡ √
s − M̂ − ∆(1)/2. Within the

effective theory there are three classes of diagrams that
contribute to T (1). Firstly, there are hard corrections
consisting of a propagator insertion [∆(1)]2/4 − M̂∆(2)

as well as a vertex insertion C(1). Secondly, there is a
four-point vertex diagram due to the (ψ̄χ)(χ̄ψ) operator
in Lint. The third class are soft-photon loop diagrams,
corresponding to the non-factorizable corrections. There
are four such diagrams, a correction to the scalar propa-
gator, two vertex correction diagrams and a box diagram.
Adding up all these contributions and using the explicit
result for C(1) (in the MS-scheme) [4] we obtain

i T (1) = i T (0)× (17)[
ag

(
3 ln

−2M̂D
ν2

+ 4 ln
−2M̂D
M̂2

ln
−2M̂D
ν2

− 7 ln
−2M̂D
M̂2

− 3
2

ln
M̂2

µ2
− 7

2
+

2π2

3

)

+ ay

(
2 ln

M̂2

µ2
− 1

2
− iπ

)
− [∆(1)]2

8DM̂
+

∆(2)

2D − D
2M̂

]

where we have subtracted the initial state collinear sin-
gularities minimally. We denote the corresponding fac-
torisation scale by ν to distinguish it from the renormal-
isation scale µ.

We can now perform the polarisation average and take
the imaginary part of (T (0) + T (1))/s. This result will
describe the line shape near resonance with a relative
accuracy of α2. Moving away from the resonance, the
relative error becomes of order unity, since δ is not small

any longer. To obtain a good description for all values of√
s, the result of the effective theory has to be matched

to the off-resonance result of the full theory.

In Fig 1 we show the leading order line shape in the
effective theory and the tree-level (order α2) cross sec-
tion off resonance in the full theory. The two results do
agree in an intermediate region where both calculations
are valid. This allows to obtain a consistent LO result
for all values of

√
s. We also show the NLO line shape.

For the numerical results we have chosen to use the MS-
scheme with αy = αg = 0.1 and αλ = (0.1)2/(4π). The
pole mass is assumed to be M = 100 GeV which results
in the MS value M̂ = 98.8 GeV for the LO result and
M̂ = 99.1 GeV for the NLO result. Furthermore, we have
chosen a variable factorisation scale such that there are
no large logarithms involving ν. We remark that in order
to obtain an improved NLO result for the whole region
of

√
s, the NLO line shape would have to be matched to

the NLO off-resonance cross section in the full theory.

The example considered here is based on a rather sim-
ple toy model. Nevertheless, it allows to address the con-
ceptual issues related to unstable particles. The main
result is that, using an effective theory approach, cal-
culations can be performed in an systematic way in ex-
panding in the small quantities α and Γ/M . Applying
our method to the Standard Model might require more
tedious calculations, but the main result remains valid.
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